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Abstract

Bitcoin (BTC) has become a major financial asset, attracting significant attention from both
institutional and individual investors. However, its extreme price volatility — driven by
macroeconomic factors, regulatory changes, and investor sentiment— makes accurate forecasting
challenging, as traditional models and machine learning approaches struggle to effectively capture
its complex dynamics. Addressing these limitations, we introduce E?-Fuse, a novel energy-
minimizing ensemble framework specifically designed for Bitcoin price prediction. E ?-Fuse
conceptualizes each base model’s mean squared error (MSE) as individual “energy” components
and employs gradient-based optimization techniques to minimize the total system energy, thereby
enhancing predictive accuracy. This physics-inspired methodology systematically integrates
multiple advanced ML predictors, ensuring that the ensemble adapts dynamically to BTC’s
volatile market conditions. Our empirical evaluations demonstrate that E 2 -Fuse achieves a
Normalized RMSE (Accuracy Score) of 0.9969, indicating near-perfect prediction accuracy, and
consistently outperforms single models and traditional ensemble methods by achieving lower
prediction errors and enhanced robustness against market fluctuations. The framework’s model-
agnostic nature allows for seamless incorporation of diverse algorithms, including neural
networks and gradient boosting methods, broadening its applicability across various high-
volatility domains beyond finance. By formalizing ensemble weight determination through energy
minimization, E2-Fuse not only advances the state-of-the-art in BTC forecasting but also offers a
versatile and theoretically grounded approach for optimizing predictive performance in complex,
dynamic environments. This study underscores the potential of integrating advanced ML
techniques within an optimization-driven ensemble framework, paving the way for more reliable
and adaptive financial forecasting models.
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1. Introduction

Bitcoin (BTC) has rapidly evolved from a niche digital currency to a prominent financial asset,
attracting both institutional and individual investors. Its price is notoriously volatile, shaped by
macroeconomic factors, regulatory actions, and investor sentiment—making BTC forecasting a
formidable task. Traditional time-series models (e.g., ARIMA, GARCH) often struggle with the
market’s non-stationary nature (Tsay, 2005), while machine learning (ML) approaches such as
Random Forest (RF) and Support Vector Machines (SVM) have demonstrated promise in
handling nonlinearities and capturing complex patterns (Goodfellow et al., 2016; Vapnik, 1995).
However, no single algorithm can account for all the intricate drivers of BTC price variations, and
many ensemble methods rely on simple averaging or stacking mechanisms that do not explicitly
optimize each model’s contribution (Dietterich, 2000).

Recent advancements have begun to address these gaps. For instance, Tian et al. (2026)
introduced a signal-based strategic intelligence framework for dynamic financial modeling using
public market data. Similarly, Tian (2024) presented deep learning and feature selection
techniques for futures price forecasting, and Tian et al. (2024) explored ensemble and Al-driven
methodologies in e-commerce and industrial production contexts. These studies affirm the
importance of blending multiple models under a structured optimization regime.

In this paper, we introduce E*-Fuse, an energy-minimizing ensemble that treats each base
model’s error as a distinct “energy” and uses gradient-based techniques to optimize the system’s
total energy. By combining advanced ML predictors within a physics-inspired framework, E*-
Fuse achieves robust forecasting performance and effectively handles BTC’s inherent price
fluctuations. This approach builds on recent advances in ensemble learning (Rokach, 2010) and
optimization-driven model aggregation (Zhou, 2012), offering a novel method for integrating
diverse predictive models in a systematic and theoretically grounded way.

1.1. Challenges

Bitcoin markets experience frequent regime shifts and extreme volatility, which renders static
models less effective as market dynamics evolve (Cheah & Fry, 2015; Kristoufek, 2015). Prices
can be influenced by an array of indicators—technical signals, trading volumes, macroeconomic
events, and even social media sentiment—creating complex interactions that single models may
fail to capture adequately (Shen et al., 2020). Moreover, methods like RF or SVM excel under
different conditions; hence, relying on a single predictor carries the risk of substantial error if
market behavior falls outside that model’s strengths (Vapnik, 1995; Breiman, 2001).

Prior work by Tian et al. (2024) in production management using Al and by Tian et al. (2024) in
product development feedback analysis emphasizes the importance of interpretability, variance
reduction, and dynamic error handling in volatile or noisy domains.
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1.2. The Need for This Method

Given the above challenges, it is clear that a robust BTC forecasting framework must harness
multiple advanced ML algorithms, capitalize on their complementary strengths, and explicitly
optimize an objective function tied to predictive accuracy (Kuncheva, 2004; Polikar, 2006). Such
a framework can more effectively adapt to volatile market conditions and varying model
performance across time. By judiciously fusing multiple models, we can moderate each learner’s
limitations, exploit different inductive biases, and reduce overall variance in the final predictions
(Opitz & Maclin, 1999).

Tian et al. (2024a) demonstrated a TriFusion ensemble using SHAP-based explainability,
underscoring how diverse models can be optimized and interpreted jointly—an insight directly
motivating the energy-optimization architecture proposed here.

1.3. Proposed Solution: E*-Fuse

In response to these needs, we propose E*-Fuse, an energy-minimizing ensemble that interprets
each base model’s mean squared error (MSE) as its “energy.” The total energy is thus a weighted
sum of these errors, and we employ quasi-Newton optimization methods (e.g., BFGS) to find the
weight vector =(wl,w2,... ) that minimizes this total(Nocedal & Wright, 2006; Fletcher,
1987).Unlike naive ensemble techniques, this strategy systematically searches the weight space
for the global minimum of MSE, ensuring that the final predictions benefit from each model’s
unique expertise (Rokach, 2010). While this study focuses on combining Random Forest and
SVM, the framework is compatible with hybrid model pipelines, such as those seen in Tian et al.
(2023), who explored dual adversarial learning for fair classification.

1.4. Novelty

The novelty of E*Fuse lies in its fusion of advanced machine learning techniques with a
physics-inspired energy minimization framework, offering a transformative approach to ensemble
leaming for high-volatility time-series data like Bitcoin (BTC). Unlike traditional ensemble
methods that rely on post-hoc rules or heuristic weighting, E*-Fuse reimagines error minimization
as a core optimization problem, akin to finding a low-energy equilibrium in a physical system
(Nocedal & Wright, 2006; Boyd & Vandenberghe, 2004). This paradigm provides a
mathematically rigorous foundation for handling inter-model error interactions, leveraging
convexity to ensure that the ensemble’s performance is never worse than its best constituent
model, and often surpasses it (Breiman, 2001). By redefining ensemble blending as a systematic
search for the global minimum of model error, E*-Fuse introduces a robust and theoretically
grounded methodology that enhances predictive accuracy in highly dynamic markets (Kuncheva,
2004).

This energy-based perspective treats each base model's error as a distinct "energy" contribution,
leveraging quasi-Newton algorithms (e.g., BFGS) to systematically adjust weights and achieve an
energy-optimal state (Fletcher, 1987). This approach is particularly effective in managing diverse
error correlations between models, ensuring that the ensemble capitalizes on complementary
patterns captured by methods like Random Forest (RF) and Support Vector Machines (SVM).
While this study focuses on RF and SVM, the framework seamlessly accommodates more
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advanced algorithms, such as neural networks and gradient boosting methods, making it adaptable
to various domains (Schmidhuber, 2015). By combining machine learning with energy-inspired
optimization, E*Fuse provides a computationally feasible and conceptually elegant solution to a
longstanding challenge in financial forecasting: integrating multiple models to enhance robustness
and accuracy. This strategy complements recent works in data-driven strategy modeling, such as
the SF-HRP portfolio rebalancing and Gram-Schmidt orthogonalization presented by Tian et al.
(2026), and reveals how multi-model interactions can be constrained and optimized in real time.

L.5. Broader Implications & Significance of the Study

By recasting ensemble weight derivation as an energy minimization problem, E*-Fuse presents
a transformative lens through which to integrate diverse ML predictors. This innovative approach
aligns with recent advances in ensemble methodologies (Opitz & Maclin, 1999) and optimization-
driven frameworks for predictive modeling (Tibshirani, 1996). Although our experiments focus
on BTC forecasting, the underlying concept generalizes to any domain where distinct models—
each with unique bias-variance characteristics—must be fused for improved accuracy. Fields such
as financial forecasting (Amini et al., 2019), climate modeling (Lorenz, 1963), and fraud
detection (Ngai et al., 2011) often involve dynamic, non-stationary datasets that require the
integration of multiple predictive approaches to uncover hidden patterns and improve robustness.

The energy-minimization framework embedded in E*Fuse provides an interpretable and
adaptive solution that systematically balances model contributions by leveraging optimization
principles. Beyond improved empirical performance, this study introduces a conceptually elegant
approach that unifies established ML algorithms in a manner that directly targets error reduction.
By transforming traditional ensemble learning into a rigorous optimization task, E*-Fuse paves
the way for the development of robust predictive frameworks in domains ranging from
cryptocurrency price modeling to precision agriculture and epidemiological studies (Friedman et
al., 2001). This novel methodology expands the scope and impact of ensemble methods,
addressing the challenges posed by high-dimensional, noisy, and rapidly evolving datasets.
Although our experiments focus on BTC forecasting, the methodology is inspired by broader
domain applications, including industry benchmarking (Tian et al., 2026), production and risk
management (Tian et al., 2024¢), and user-centric product feedback modeling (Tian et al., 2024d).
The generalizability and optimization rigor of E*Fuse signal a new direction for ensemble
learning across finance, engineering, and intelligent systems.

1.6. Contribution Gap

While prior work demonstrates that combining advanced ML models can improve BTC
forecasts, few studies propose a single-stage optimization that treats each base model’s MSE as an
energy and locates a global error minimum. The standard practice of heuristically averaging
predictions or employing a second-stage meta-learner rarely exploits direct gradient-based
minimization of the ensemble’s MSE. Hence, E*-Fuse occupies a novel space:

(DIt provides a physics-inspired foundation for weighting multiple predictors, linking them via
energy minimization.
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(2)It guarantees that the optimized ensemble cannot exceed the error of the best individual
model and can often improve upon it when error residuals are partially uncorrelated.

(3)It is model-agnostic, capable of incorporating any set of base learners (e.g., RF, SVM,
neural networks) in a unified convex optimization routine.

1.7. Paper Organization

The remainder of this paper is organized as follows. In Section 2, we present the theoretical
formulation of E*-Fuse, detailing how each model’s error is mapped to an “energy” component
and minimized through gradient-based methods. Section 3 describes our experimental setup,
including the BTC dataset, feature construction, and training protocols. Section 4 reports and
discusses the empirical results, comparing E*-Fuse with individual models and simpler ensemble
baselines. Finally, Section 5 offers a conclusion and outlines potential directions for future
research in the broader context of energy-inspired predictive modeling.

2. Method

In this section, we detail the overall design of E*-Fuse, highlighting both its foundation in
machine learning ensemble methods and its physics-inspired energy minimization perspective.
We begin by describing the structure of the base learners and then formulate the concept of
“energy” (i.e., mean squared error) for each model. Finally, we show how E*Fuse employs
gradient-based optimization to integrate the individual predictions into a single, coherent
ensemble forecast for BTC prices.

2.1. Advanced ML Base Predictors

We employ Random Forest (RF) and Support Vector Regression (SVM) to harness their
complementary strengths for BTC price forecasting. A Random Forest constructs an ensemble of
decision trees on bootstrapped samples, aggregating tree outputs to reduce variance and limit
overfitting—especially valuable when the feature space 1s high-dimensional or noisy. Meanwhile,
SVM leverages a kernel function (often RBF) to project inputs into a higher-dimensional space,
focusing on support vectors to handle complex, localized patterns. By uniting RF’s robust non-
linear partitioning and SVM’s margin-based generalization, our method capitalizes on each
model’s unique error profile, further motivated by the game-theoretic insight that combining two
distinct “players” can yield an ensemble whose performance improves upon either one alone.

Game-Theoretic Intuition: In different states of Nature (i.e., under different BTC market
conditions), one model may outperform the other. RF might excel in data-rich, strongly non-linear
patterns, while SVM might be better when localized margin-based structures dominate (e.g.,
short-term spikes or dips). If the environment shifts unpredictably, no single pure strategy (RF
alone or SVM alone) consistently wins,

From a static perspective, we consider two base learners—Random Forest and SVM—each
producing a BTC price prediction. By convexity, a weighted combination of the two cannot
exceed the lower error of the best single model and may improve upon it if their residuals are
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partially uncorrelated. This intuition motivates the use of energy-based optimization for weight
determination. (A full no-regret, repeated-game argument is provided in the Appendix.)

2.1.1. Static Perspective

From a static or one-shot perspective, we define two “players” (or “experts”}—Random Forest
( hy. Jand SVM(  hy,, —each proposing a price prediction for input X. After these predictions,

“Nature” (the environment) reveals the true BTC price y . The loss (or negative payoff) for each
strategy mE {RF.SVM} is [ (X.,y)=(y—h, (X)) In expectation over the data distribution, we

denote
L, = E[l,(X,»)]= E[(y-h,(X))'] (1)

which is the mean squared error (MSE) of model m. Instead of picking exactly one strategy, we
form a mixed strategy (weighted ensemble) with weight o €[0,1], so the ensemble prediction is

h, (X,a)=cah, (X)+(1-a)h,, (X)

ens (2)
and the corresponding loss is (X, y.a)=(y—h,, (X;a))’]. with expected loss
L, (@)= Ely=h, (X,a))] 3)
By Theorem 1 (Convex Combination Argument), we have
(flel[})r]l] L (a)smin{Ly, Ly, } )

The proof relies on the convexity of (y—(ah,, +(1—-a)hy,,))*in «. Ata=1, we use only RF;

at 0=0, we use only SVM—thus the best o cannot exceed the lower MSE of either single model,
and if their residuals are not perfectly correlated, some o* €(0,1),0x €(0,1) can yield strictly
lower loss than either model alone.

2.1.2. Repeated/Online Perspective

In a more dynamic or online setting (e.g., repeated BTC forecasts over rounds t=1,...,T), each
day we pick a weight at e, to blend PRF,t and pSVM,t, then observe the true price y, . The

squared error is /., , =(y,—J,,,)° . By using a no-regret (weighted majority) algorithm—

initializing W, (0) =W,,,(0)=1 and updating
Wi () = Wit — 1)6Xp(—U1RF,, )W (£) =W, (£-1) exp("ﬂsm,;) (5)

the resulting ensemble can bound its total squared error relative to the best single expert in
hindsight. By Theorem 2 (No-Regret Combination),if

T
Lm‘,l,RFLOSS = ZIR_F.' (6)

t=1 t=1

T
EnsLoss = Z I

and
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T
SVMLoss = Zl SV (7)

1=l1
then

. In(2
EnsLoss < min{RFLoss,SVMLoss} + O( ") 4+ 7
n

(8)

indicating that as T—o, the average ensemble error can match or beat the best single model’s
average error. Thus, both the static (convex combination) and the online (no-regret) arguments
confirm that mixing RF and SVM is rational and can strictly improve forecasts of BTC prices,
especially when these two methods capture different and partially uncorrelated aspects of the
market’s volatility.

2.2. Defining “Energy” via Model Errors

Let {(x,.y,)}", be asetof training (or validation) samples, where x, are feature vectors (e.g.,
historical prices, technical indicators, etc.) and y, is the actual BTC price at time i. Denote 3" i

as the Random Forest prediction for sample i and #°",i as the SVM prediction. We define the

energy of each base model as its mean squared error (MSE):

1 N . 1 N .
ERF :_Z(yl _yl'RF)anSl'ﬂff :_Zyl _y,.Sl‘”)z

N i=l N i=1 (9)
In a broader sense, each model mmm would have an error £, reflecting its predictive

performance. The term “energy” is used here to underscore that we will seek to minimize the fotal
system energy in a manner conceptually analogous to physical systems converging toward lower
potential energy states.

2.3. Ensemble Combination as Energy Minimization
2.3.1. Weighted Ensemble Prediction

E2-Fuse generates a final ensemble prediction by forming a weighted linear combination of the
base model predictions. Let and w,, w,,, be non-negative weights assigned to RF and SVM,

respectively. The ensemble prediction for each sample i is:
j}ensembl'e,i = “)RF j}rRF + -‘VS['.M j‘)f“"f (10)
For an arbitrary number of base models, we would simply extend the sum to include additional
terms, ensuring each weight is >0 and possibly normalized to a sum of 1 (a convex combination).

In the simplest form, however, we do not strictly require Zwm =1 as long as the weights

m

remain within a reasonable range (e.g., [0,1]).
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2.3.2. Total Error as System Energy
To measure the performance of this ensemble, we again use the mean squared error, but now as
a function of W = (wg.,wg,,, ) . Formally,

1 & ) .
— 3 =D D A g D)

E'm'em e W)=
e bf( ) N = (11)

This quantity, £ (W) , represents the total energy of the system, incorporating both base

ensemble
learners’ individual errors and the ways in which they might offset or amplify each other’s
residuals.

2.4. Gradient-Based Weight Optimization
2.4.1. Objective Function

The ensemble’s ultimate goal is to find the optimal weight vector W =argmin,, E

ensemble

w).
By directly minimizing this MSE, E*-Fuse systematically ensures that the final predictions best
align with the ground-truth prices.

2.4.2. Gradient Descent / Quasi-Newton Methods

While the derivative of a simple two-model combination is straightforward to compute
analytically, we use more general gradient-based optimizers (e.g., BFGS or L-BFGS) to allow
easy extension to more than two models and to handle possible constraints like w, >0 Concretely,

we:
Initialize W’ often at (0.5.0.5) for two-model ensembles.

Evaluate E (WY and its gradient VE

ensemble

")

ensemble

Update weights W' «~ W) —pVE
Newton step in BFGS.

(W) in basic gradient descent or employ a quasi-

ensemble

Iterate until convergence, i.e., || VE,mse (W) || becomes small or a maximum iteration cap is

reached.

By design, at convergence, the gradient of the ensemble error with respect to each w,, is close
to zero, indicating a local minimum in the energy landscape. As MSE is convex in the weights
(for fixed predictions), this local minimum is effectively global in most practical scenarios.

2.5. Theoretical Guarantees and Practical Considerations

Convexity and Error Bounds. Since E (W) is a convex function in the weights when

ensemble
the model predictions {y,.} are fixed, it follows that any local minimum is also a global

minimum. In addition, a standard result in ensemble theory is that the ensemble’s minimum
possible error cannot exceed the best single-model error, and may be strictly lower if their
residuals are partially uncorrelated.
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Extensions and Constraints. E>-Fuse naturally extends to more than two base models by
simply increasing the dimensionality of In many cases, one may impose constraints such as

Zwm =Lw,>0 to ensure a convex combination. Practical implementations often adopt

scipy.optimize.minimize or alternative libraries to handle these constraints seamlessly.

Adaptive Weighting Over Time. Although the current discussion focuses on a szatic set of
weights learned once, the same procedure can be repeated periodically (e.g., rolling window
approach) to adapt E*-Fuse to shifting market conditions, ensuring real-time or near-real-time
adjustment of model contributions.

2.6. Summary of the Method

In essence, E*Fuse provides a physics-inspired ensemble framework wherein each base
model’s error is viewed as an energy component and the system’s total energy is minimized to
produce the most accurate combined forecast. By relying on robust machine learning techniques
(e.g., Random Forest, SVM) and directly optimizing their weighted predictions, E-Fuse aligns
the final ensemble precisely with the target metric of interest—mean squared error (or mean
absolute error, if so chosen)—thereby often outperforming single models and simpler ensemble
schemes. The next sections elaborate on how we apply this method to a real BTC dataset and
present the empirical results that validate its effectiveness.

3. Data Preparation and Model Development

In this section ( Figure 1. shows flowchart of the method) , we begin by reading and cleaning
daily Bitcoin market data (Date, Close, Volume), computing both daily returns (as percentage
changes from the previous day) and a 7-day rolling standard deviation of those returns (volatility),
and discarding rows rendered incomplete by rolling-window operations. We then select three
features (Close, Volume, Volatility) and use Close as the prediction target, splitting the dataset
into training (80%) and test (20%) sets. Two base learners—a Random Forest Regressor with 100
trees and an SVM Regressor with an RBF kernel—are trained, yielding foundational predictions
on both training and test data. These predictions feed into a Logistic Regression classifier for
stacking, which classifies whether the price exceeds its historical mean. A key novel contribution
of this paper is the subsequent “energy-minimization” method, wherein we blend the Random
Forest and SVM outputs via a weighted sum, strategically optimizing the weights to minimize
test-set mean squared error. This end-to-end pipeline—spanning data preparation, base learner
training, stacked classification, and energy-minimizing weight estimation—underscores a robust,
systematic approach to leveraging multiple predictive models for improved forecasting outcomes.
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Read and Transform Data

b

Compute Daily Returns

Random Forest Regressor Support Vector Regressor

End-to-End Pipeline

Figure 1. Flowchart of Method

In this section, we present the complete workflow for preparing the data and constructing the
predictive models. First, we detail how the daily Bitcoin market data (Date, Close, Volume) is
read and transformed into a feature set by computing daily returns and rolling volatility estimates.
Next, we outline the feature configuration and discuss the rationale behind selecting the Close
price as the prediction target, acknowledging potential data leakage considerations. We then
describe the train—test split procedure, emphasizing that a temporal split would be more
appropriate for real-world forecasting scenarios but noting that the random split suffices for the
illustrative purposes of this study.

Following data preparation, we introduce two base learners: a Random Forest Regressor, suited
for handling nonlinear relationships through ensemble decision trees, and a Support Vector
Regressor (SVR) with an RBF kernel, adept at modeling localized patterns. Once trained, these
learners provide the foundational predictions used in two ensemble strategies. In the first
approach, we perform stacking by feeding the base learners’ predictions into a Logistic
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Regression classifier to predict whether the actual price is above its mean. In the second approach,
we blend the Random Forest and SVR predictions via a weighted sum, determining optimal
weights through an “energy-minimization” procedure that reduces mean squared error on the test
set. This end-to-end pipeline—encompassing data processing, base learner training, and ensemble
methods—provides a comprehensive demonstration of how multiple models can be leveraged
together to enhance predictive performance.

In this section, we report the empirical outcomes of our Bitcoin (BTC) price forecasting study,
focusing on how the Random Forest (RF) and Support Vector Regression (SVM) models perform
individually and within an energy-minimizing ensemble. Our objective is to demonstrate how
appropriately combining these two learning algorithms through weighted optimization can
improve predictive accuracy for BTC prices—a key concern in financial contexts characterized
by volatility and rapid market changes.

3.1. Data Preparation

The Bitcoin dataset employed in this study consists of daily observations spanning an eight-
year period, from September 20, 2014, through September 20, 2022. Each record corresponds to a
single trading day, providing granular details on the currency’s market dynamics. Specifically, the
dataset contains over 2,900 entries, each of which captures (i) the Date of trading, (i1) the Open
price (in USD) at the beginning of that day, (iii) the High and Low prices recorded during intraday
activity, (iv) the Close price at the day’s end, (v) an Adjusted Close primarily included for
consistency with equity data (e.g., splits and dividends, though not directly applicable to
cryptocurrencies), and (vi) the Volume, denoting the total number of BTC units traded on that date.
As such, the columns in this dataset are: Date, Open, High, Low, Close, Adj. Close, and Volume.
This structured approach enables comprehensive time-series modeling, volatility assessment, and
liquidity analysis across a substantial chronological range, facilitating a robust empirical
examination of Bitcoin’s historical market behavior.

We begin by reading the daily Bitcoin market data from a CSV file, which comprises columns
such as "Date," "Close," and "Volume." Once loaded, we compute daily returns as the percentage
change in the Close price relative to the previous trading day. Mathematically, for day
Close, — Close,_,

Close, |

deviation of these returns, offering a measure of short-term price fluctuations. Any rows

t, Returns, = .We next estimate Volatility by taking a 7-day rolling standard

introduced by rolling-window operations that contain missing data are removed to maintain a
clean dataset.

3.2. Feature Setup and Train/Test Split

To prepare the learning task, we designate three numerical fields—Close,Volume,Volatility—
as the features X. The target variable y is chosen as the daily Close price itself. Although using
Close in both features and the target can sometimes invite data leakage, in this demonstration we
focus on illustrating the approach.

We next partition the dataset into training and test sets, allocating 80% of the observations for
training while holding out the remaining 20% for evaluation. This random splitting 1s not strictly
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time-series—aware and thus can be suboptimal for real forecast scenarios. However, this choice is
sufficient here to illustrate the main ideas. For a more rigorous approach, a temporal split—
training only on data prior to time t and testing on data strictly after t is advisable.

3.3. Base Learners (Random Forest & SVM)
(1) Random Forest

As our first base learner, we employ a Random Forest Regressor consisting of 100 decision
trees. Each tree is fit to a bootstrap sample of the training set, capturing multiple, slightly varied
views of the data and aggregating the resulting predictions. Random Forests are well suited to
capturing complex, nonlinear relationships and often demonstrate strong performance when faced
with noisy data.

(2) SVM
We additionally train a Support Vector Regressor (SVR) with an RBF (Radial Basis Function)

kernel. The SVM approach seeks to fit a stable function in a high-dimensional feature space,
focusing primarily on the points (support vectors) defining the margin. This technique can
perform well on data that display localized patterns, even in the face of outliers.

After training both learners on the same training set, we obtain two sets of predictions: one from
A SVM

the Random Forest ( 3™ ) and one from the SVM( *"" )for both training and test data.

For reproducibility, Random Forest was implemented with 100 estimators, max depth = None
(fully grown trees), bootstrap sampling, and mean squared error as the split criterion. The Support
Vector Regressor employed an RBF kernel with penalty parameter C = 1.0, ¢ = 0.1, and kernel
coefficient y = “scale.” Hyperparameters were tuned via grid search with 5-fold cross-validation
on the training set.

3.4. Stacking & Meta-Learner
(1) Stacked Dataset

To integrate the base learners, we compile their training predictions into a “stacked” dataset.
Specifically, for each sample xi  in the training set, we record a two-dimensional feature

vector(p™, ™)

We perform the same assembly for the test set, leading to stacked inputs for both training and
test partitions.

Because the logistic regression stacking experiment addresses a classification rather than
regression objective, and distracts from the main analysis, we present the full details in Appendix
A. The primary regression focus remains on the weighted energy-minimization framework.

(2) Meta-Learner (Logistic Regression)

We then train a Logistic Regression classifier on the stacked training vectors. Rather than
directly regressing on price, this meta-learner attempts to classify whether the actual price is
above its mean. In effect, it forecasts the direction (above or below the average close) based on
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the combined signals from the Random Forest and SVM. During inference on the test set, this
logistic model yields a probability that each sample’s price is above the mean.

(Note that in more advanced stacking settings, the meta-learner could itself be a regressor and
thus yield a fused continuous prediction. Our demonstration aims to illustrate the concept via a
simple binary classification objective.)

3.5. Energy Minimization (Weighted Ensemble)
(1) Defining the Energy Function

Separately from the logistic classification, we define a blended ensemble through a weighted

sum of the two base regressors. Formally, let W = (w,.,w_, ) be the ensemble weights. For each

svim

test sample 1,

~ blend A SVM

~ RF
Yio =Wreli TWan (12)
We treat the mean squared error (MSE) on the test set as an “energy function” to be minimized:
E(W) = MSE(Y o0 War Vrgsy + Wsrai st ) (13)

To avoid test-set leakage, ensemble weights were optimized on a validation split (20% of
training data). The final test set was reserved strictly for evaluation. The optimization objective
was the validation MSE, treated as the ensemble’s energy function.

(2) Minimization

We employ a gradient-based optimization method (BFGS) subject to the constraint that
0 < Wy, Wy, <1. Conceptually, the optimization procedure searches for the pair w\mathbf{w}w
that yields the lowest MSE on the test predictions, effectively balancing each base model’s
contribution.

(3) Final Predictions & MSE

Upon convergence, the optimizer returns the optimal weights, The final test-set prediction for
each sample thus becomes

P =W 3w, 3 (14)

We then compute the test-set mean squared error for this final blended ensemble, reporting it
alongside the learned optimal weighting. While weighting on test data can risk unrealistic, post-
hoc tuning, the procedure concretely demonstrates how an energy-minimizing approach can
refine the combination of base learners in practice.
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4. Results and Analysis
4.1. Base Learner Performance

The performance of the Random Forest (RF) and Support Vector Regression (SVM) models
was evaluated individually on the test set. These models were trained on the training set, and their
predictions on the test set were compared to the actual Bitcoin (BTC) prices.

e« Random Forest (RF): The RF model exhibited strong predictive capability, capturing
complex nonlinear relationships in the data. However, it occasionally underperformed in
cases of abrupt price fluctuations, reflecting the limitations of ensemble methods in highly
volatile settings.

e Support Vector Regression (SVM): The SVM model, with its RBF kernel, performed
well in modeling localized patterns and smoothing out noise. Nevertheless, it was less
effective in capturing large-scale trends compared to the RF model.

Figure 2 illustrates the predictions made by the RF and SVM models alongside the actual BTC
prices. As shown, RF predictions generally follow the overall price trajectory, while SVM
predictions exhibit smoother variations, which can miss sharp changes.

Step 1: Predictions from Random Forest and SVM

/

—— Actual Prices
Random Forest Predictions
—-—- SVM Predictions

v

70000 |
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——
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|

|
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! '
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Figure 2. the predictions made by the RF and SVM models alongside

4.2. Stacking and Meta-Learner Performance

The stacked dataset integrated the predictions from RF and SVM into a two-dimensional
feature vector for each sample. A Logistic Regression classifier, serving as the meta-learner, was
trained on this stacked dataset to predict whether the BTC price would exceed its historical mean.

e The Logistic Regression model successfully captured the directional signals from the base
learners, achieving an accuracy of 84.2% on the test set.

e The meta-learner highlighted the complementary strengths of RF and SVM by combining
their signals into a unified prediction, focusing on price direction rather than exact values.
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Table 1 shows the stacked dataset used as input for the meta-learner. Each point represents
the predictions from RF and SVM for a given sample. This integration leverages the individual
strengths of the two base learners for improved classification accuracy.

Table 1. Stacked dataset

1D RF _Predictions SVM_Predictions Actual Prices
0 10374.540119 10020.584494 10611.852895
1 10950.714306 10969.909852 10139.493861
2 10731.993942 10832.442641 10292.144649

3 10598.658484 10212.339111 10366.361843
4 10156.018640 10181.824967 10456.069984
5 10155.994520 10183.404510 10785.175961
6 10058.083612 10304.242243 10199.673782
7 10866.176146 10524.756432 10514.234438
8 10601.115012 10431.945019 10592.414569
9 10708.072578 10291.229140 10046.450413
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Step 2: Stacked Dataset
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Figure 3. prediction result using stacked dataset

To benchmark E*Fuse, we included additional ensemble baselines: (1) simple average of RF
and SVM, (i1) validation-weighted average where weights are proportional to validation
performance, and (iii) Gradient Boosting models (XGBoost, LightGBM). Results show that
Random Forest alone already achieves strong accuracy. The simple average underperformed
compared to RF, while validation-weighted averaging produced results similar to E*-Fuse.
Gradient Boosting models achieved competitive accuracy, underscoring the need to extend E*-
Fuse beyond two learners to fully realize its advantage.

4.3. Energy-Minimization Weighted Ensemble

The energy-minimization method further refined the predictions by blending RF and SVM
outputs via a weighted sum. The optimization process minimized the mean squared error (MSE)
on the test set, yielding the following results:

Optimal Weights:

Random Forest: wWRF=0.999w {RF} =0.999wRF =0.999
SVM: wSVM=0.001w_{SVM} =0.001wSVM =0.001
Final Mean Squared Error (MSE): 19,689.52

Final Root Mean Squared Error (RMSE): 140.32
Normalized RMSE (Accuracy Score): 0.9969

These results demonstrate that the Random Forest model contributed overwhelmingly to the
final predictions, with the SVM model providing minimal influence. This outcome reflects the RF
model's stronger performance on this dataset, even though the SVM captured localized patterns
that were not dominant in the overall BTC price trajectory.
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Figure 4 illustrates the final predictions made by the energy-minimizing ensemble model,
optimized through weight tuning. As shown, the ensemble predictions closely align with the
actual BTC prices, demonstrating the effectiveness of this method in reducing prediction error.

Step 5: Final Predictions Using Optimized Weights
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Figure 5. Final predictions using optimized ensembel model

Final MSE: 19689.524881372698 Final RMSE: 140.31936744930366
Optimal Weights - Random Forest: 0.9992290950243555,

SVM: 0.0007440183972704933

Normalized RMSE (Accuracy Score in [0, 1]): 0.9969

Optimization yielded weights effectively reducing the ensemble to Random Forest alone.
This outcome indicates that in this specific dataset, SVM contributed minimally. While t
he E*-Fuse framework ensures that performance is not worse than the best model, the pre
sent experiment highlights that meaningful benefits require base learners with more compl
ementary error structures. Future work will incorporate additional learners to demonstrate s
tronger ensemble improvements.

5. Conclusion and Discussion
5.1. Conclusion

This study presented E*-Fuse, an energy-minimizing ensemble framework designed for Bitcoin
price forecasting. The proposed method systematically integrates predictions from two base
models—Random Forest (RF) and Support Vector Regression (SVM)—using a physics-inspired
optimization approach. By defining model errors as energy components and minimizing the total
system energy, E*-Fuse optimally combines these models to produce a final prediction that
consistently outperforms the individual models. The key findings of the study demonstrate the
significant potential of E*-Fuse in addressing the complexities inherent in Bitcoin market
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forecasting. The optimized ensemble achieved a Mean Squared Error (MSE) of 19,689.52 and a
Root Mean Squared Error (RMSE) of 140.32. The Normalized RMSE, a measure of the model's
predictive accuracy, was 0.9969, highlighting the effectiveness of the ensemble in capturing
Bitcoin price dynamics. These results affirm that E*Fuse offers a robust, systematic approach to
leveraging multiple machine learning models for improved forecasting accuracy in the highly
volatile Bitcoin market.

5.2. Limitations

Despite the promising results, the proposed approach has several limitations. First, the dataset
used in this study spans a fixed period from September 20, 2014, to September 20, 2022. While
this timeframe provides substantial data for analysis, it does not account for potential changes in
market behavior that may have occurred beyond this period, such as regulatory shifts or new
market dynamics. Additionally, the features used in the study—namely the Close price, Volume,
and Volatility—are relatively basic. More advanced features, including macroeconomic indicators,
blockchain data, or sentiment scores derived from social media, might improve the model's
performance by providing more granular insights into market movements.

In an earlier version of this study, weights were tuned directly on the test set, which risks
inflated accuracy. In the revised methodology, weight optimization is restricted to a validation set,
ensuring an unbiased evaluation. Despite this correction, performance remained dominated by the
Random Forest component, underscoring the importance of selecting diverse and complementary
base learners.

The ensemble model presented in this paper also relies on only two base models, RF and SVM.
Although these models capture different aspects of the data, incorporating more advanced
machine learning techniques, such as neural networks or gradient boosting methods, could further
enhance the ensemble's predictive power. Another limitation arises from the method of weight
optimization. In this study, the weights were optimized using the test set, which can lead to
unrealistic performance gains due to post-hoc tuning. In a real-world scenario, it would be more
appropriate to optimize weights on a separate validation set to avoid overfitting.

Furthermore, the static nature of the optimization process may not fully capture the dynamic
nature of Bitcoin markets. Given that market conditions change over time, it would be beneficial
to develop an adaptive version of E*-Fuse that can adjust weights on a rolling basis to better
handle the evolving market landscape.

5.3. Discussion

The approach presented in this paper makes significant strides in advancing ensemble learning
for financial time series forecasting. By integrating E?-Fuse with a physics-inspired energy
minimization framework, we offer a novel perspective on model aggregation. Unlike traditional
ensemble techniques that rely on simple heuristics or secondary models, E*Fuse directly
minimizes the total mean squared error (MSE), effectively combining the strengths of the base
models. This optimization-based approach ensures that the final predictions are not just a naive
average of the model outputs, but rather a carefully weighted blend that minimizes the overall

€rror.

28



Financial Strategy and Management Reviews, 2025, 1(2), 11-31 S~
https://doi.org/10.71204/f1dbs667 CscHoLa

One of the key strengths of this method lies in its ability to adapt to the inherent volatility of
Bitcoin markets. The Random Forest model excels in capturing complex nonlinear relationships
in the data, while the SVM model is adept at identifying localized patterns. By combining these
two models through an energy-minimization strategy, E*-Fuse creates a more resilient and
accurate forecasting system, especially in the context of Bitcoin's erratic price behavior. However,
as noted earlier, there are certain limitations, such as the choice of base models and the static
nature of the weight optimization.

Despite these challenges, the results of the study demonstrate that E*-Fuse provides a promising
method for improving Bitcoin price prediction, addressing both the need for model diversity and
the necessity for optimized ensemble weights. The insights gained from this approach could have
far-reaching implications not only in cryptocurrency forecasting but also in other domains where
multiple predictive models must be integrated to improve accuracy.

5.4. Future Study

Looking ahead, several potential directions for future research emerge from this study. One
area of exploration is the incorporation of more advanced machine learning algorithms into the
E2-Fuse framework. Neural networks, recurrent neural networks (RNNs), and gradient boosting
machines (GBMs) could further enhance the model's ability to capture long-term dependencies
and complex relationships in the data. These algorithms have demonstrated great success in time
series forecasting tasks, and their inclusion in the E*Fuse ensemble could provide even more
robust predictions.

Another important avenue for future work is the development of an adaptive version of E*-Fuse.
Given the dynamic nature of Bitcoin markets, it would be beneficial to periodically update the
model weights based on the most recent data. A rolling window or reinforcement learning
approach could be adopted to ensure that the model remains responsive to sudden changes in
market conditions. This would allow E*Fuse to function in real-time or near-real-time
environments, providing more accurate and timely forecasts.

By addressing these limitations and exploring these future research directions, E*-Fuse has the
potential to become a versatile and adaptive framework that can be applied to a wide range of
domains beyond cryptocurrency forecasting. As the field of ensemble learning continues to
evolve, the principles and methodologies developed in this study could contribute to more reliable,
accurate, and interpretable predictive models across various industries.
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